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Multiscale geometrical reconstruction of porous structures
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Multiscale percolation system(®PSg were proposed to study invasion processes in porous media with a
large pore size distribution, considering the porous section as a polydisperse structure that modifies its geo-
metrical structure when the scale of observation is changed. Multiscale models are nonregular percolation
systems and do not have the following limitations common to classical percolation systgrisis not
necessary to choose a particular value for the coordination numher to establish a particular distribution
law for it and (ii) constrictions appears naturally as pores of smaller diameters connecting pores of greater
diameters, as the result of superposing different scales. A fundamental question that arises in this method is
related to the conservation of the spatial connectivity between the pores, which is very important if MPS
models are to be used for simulating fluid retention and transfer. The present work is focused on this problem.
It is shown that, although conserving the classical correlation function at the object level, i.e., pores, the use of
a MPS as a representation of a porous medium does not allow for the conservation of the geometrical structure
of clusters of connected pores. An improved MPS model is discufS&663-651X%96)08407-3

PACS numbegs): 47.55.Mh, 61.43.Bn

[. INTRODUCTION fluence of spatial correlation on the percolation threshold and
by loannidis and Chatzig5,6] and Tsakiroglou and
Microscopic models for simulating fluid retention and Payatakeg7] to study the effect of spacial correlation on
transfer in porous media are frequently monodisperse modetsercury intrusion.
based on random percolation networks of sites and/or bonds Recently, image analysis methods used over pictures of
interacting between themselves in a single scale. Classicallfighly polished surfaces of porous materials, taken with an
sites are randomly distributed in a network with a constant oelectron scanning microscope, have been used to describe the
variable coordination numbet, which is the number of sites porous structur¢8—12]. Aperture and median line graphics
that are neighbors of each site in the network. The diametanethodq 10,13 enable the statistical investigation of porous
of the bond connecting two contiguous sites is randomlysections, including the statistical description of constrictions
chosen so as to remain smaller than the diameters of thend connectivity between pores. By assuming isotropy,
connected sites. Several well-known problems are associatedree-dimensional percolation networks can thus be con-
with this construction procedurdi) It is very difficult to  structed from two-dimensionalD) porous sections, con-
choose a particular constant coordination numbédor the  serving the size distribution of pores and constrictions and
porous structure or to ascertain a realistic distribution law forthe distribution law for the coordination numbeirQ].
this parameter(ii) it is very difficult to access the size dis- A multiscale approach is used in the present article. The
tribution of constrictions, andlii ) for simplicity reasons, net- porous section is conceived as a polydisperse structure that
works are frequently spatially honcorrelated. modifies its geometrical structure when the scale of observa-
Mercury intrusion and sorption isotherms results havetion is changed. This conception is in accordance with the
been used to estimate the size distribution of constrictionfractal (in the sense obroken as in Mandelbrof14]) nature
[1,2]. In general, several parameter models are needed in thisf porous materials: geometrical parameters such as porous
kind of work, which are adjusted to fit the model to experi- volumeV and porous surfacB require the use of a measur-
mental data. In fact, the introduction of bonds in the percoding scalel and increase their values hslecreases. Without
lation system is frequently a necessary hypothesis in percaaking the technical difficulties into account, such as attain-
lation models due to the lack of information about the spatiabble resolution when using electron scanning microscopy or
distribution of pores. Chatzis and Dulli¢f] and Daan and  any other kind of measuring method, this description appears
Saliba[2] used a local correlation between throat size ando be specially suitable for the geometrical description of
pore size given by a relationship between the cumulativgporous media with a large pore size distribution. Another
distributions of throats and pores. Mayago#iaal. [3] have  difficulty comes from the limitations of the geometrical mod-
also considered a local correlation between a site and thels, necessary for simplicity in the geometrical description.
contiguous bond, generated by the conditional probability Multiscale models were introduced by Neimafk5],
related to the impossibility of connecting a site with a bondcalled multiscale percolation systenigIPS9. At the first
greater in size. Spatially correlated networks of sites andcale, a mosaic of blocks of sizg is constructed. These
bonds were considered, e.g., by Rengdltto study the in- blocks are classified as poréX blocks, solid matter(Y
blocks, and blocks of pores with sizes smaller than(Z
blocks, which arerandomlydistributed in accordance with a
*Permanent address: Laboratoire d'Etudes des Transferts en Hpreviously known pore size distribution. In a second scale
drologie et Environement, 38041 Grenoble Cedex, France. r,=r,/n;, wheren, is an integer, each block is farther
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segmented in block¥, Y, andZ of sizer, and so on. At
each scalé the construction process of the MPS preserves
the volume fraction of pores with size equal to or greater
thanr;, v, and the volume fraction of solid matter’ ob-
served at this scale. The remaining volume fraction
vi=1—(v{+vY) is considered to be composed by porous
matter, made by pores with diameters smaller thaand not
observed at scalie

Based on Neimark’s model, Can [16] proposed a sim-
plified version of the method, randomly distributing the
pores at each scale, starting from the smaller diameters and
multiplying the scale length by 2 at each step. At each scale,
pores are randomly distributed in accordance with their vol-
ume fraction obtained from the pore size distribution. In this
method, naZ blocks are introduced in the structure, in order
to reduce the number of volume fractions to be identified.
Reconstruction of the medium is performed by superposing
the different scales. See also Ba) Xu, and Quenarfil7].

Multiscale models as conceived by Neimark anddbai
are nonregular percolation systems and do not have the first
two limitations mentioned in the first paragraph of the
present section. In factj) it is not necessary to choose a
particular value for the coordination numh&mor to estab-
lish a particular distribution law for it andi) constrictions
appear naturally apores of smaller diameters connecting
pores of greater diameters, as the result of superposing difre integers, multiples of the measuring unit, i.e., the pixel.
ferent scales. The apparent porosity, i.e., the void fractiahthe selected

Another important question that arises in this method isscale can be obtained as
related to the third limitation mentioned in the first paragraph
of the present section, i.e., the conservation of the spatial e=(Z(x)), 2
correlation of the pores when the different scales are supe
posed: although the pores are not spatially correlated at
given scale, the correlation function will be different from
zero for displacements smaller than the greater pore diameter C(u)={(Z(X)Z(x+u)) ©)
found in the microstructure, when calculated over the recon-
structed section. The question to be posedviether the for each arbitrarily chosen, whereu is a displacement in
reconstruction method preserves the correlation functiorthe plane of the porous section. Assuming an isotropic po-
measured over the original 2D binary representation of therous distribution, the correlation function will only depend
porous sectionThe present work is focused on this problem.on u=|u| and can be written as

Cu)=([Z(x1.x) [ Z(X1+u,Xp) ]). (4)

The correlation function decreases frddfu)=¢ for u=0

to C(u)=¢2 for large values ofi. Similarly, the normalized
Let S be a section of a porous medium, given by a 2Dcovariance function can be defined as

binary representation like the one shown in Fig. 1, where the

porous phase is represented in black and the solid matrix in R(U)= <[Z(X1’X2)_8][Z(X1+L;’XZ)_SD,

white[18]. It is supposed that the porous medium is isotropic ([Z(x1,%2) —€]%)

and thatS is large enough to enable statistical homogeneity.

; > . with values between ffor u=0) to O (for largeu).
Two binary representations related to any two different sec As implied by Eq.(3), the correlation function can be

tions of the medium will be thus statistically equivalent. In ; . . ; . : .
S TR . obtained by displacing the binary representation over itself in
the same wayS will display all the statistical information at L . . .
the x; direction (or x,), using multiples of the cell dimen-

this representation. . . . ' .
. o ' sions and measuring the void fraction related to the intersec-
Classically, a phase function is defined as ; . .
tion, i.e., the frequency of outcomes corresponding to two
superposed black cells. This method is described in more

1 when x belongs to the pore space details by Adler{19] and Philippiet al. [9].
0 otherwise, @

FIG. 1. Binary image of a polished section of Fontainebleau
sand (Fontainebleau, Frangepores are shown in black and the
solid matrix in white.

Where() means statistical average in the sample space. A
Sorrelation function can also be written as

Il. STATISTICAL PARAMETERS
OF 2D POROUS SECTIONS

©)

Z(x)=
A. Connectivity function

The correlation function is related to the spatial correla-

wherex denotes the vector giving the position in the plane oftion between two arbitrarily located pixels belonging to the

S. In fact, x denotes the set of 2-upleg,(,x,), wherex; ,x, porous phaséblack phasgwhen separated iy and is not to
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FIG. 3. Comparison between the classical correlation function
C(u) and the connectivity functiog(u), presently defined, for an
artificially generated porous section with identical black objects,
with linear lengthl o, randomly distributed in the section. The num-
ber fraction of black objectp is smaller tharp.. {(u)=0 only for

FIG. 2. Artificially generated porous section: the black phase isu>|C wherel . is the cluster length, where&u) =2 for u>l,.
composed by identical black square objects with linear dimension

I, randomlydistributed in a square section with a number fraction cluster length defined in this work as the length of the great-
p<p.. The cluster length, is identified in the figure, considered to est cluster present in the porous sectiomhich is a very
be the linear length of the greatest cluster of connected black olinteresting property, since the cluster lenbtincreases with
jects present in the section. the proportionp of black objects and indicates thatu) is
modified by the fashion the objects are grouped to form clus-

be confused with the probability of finding two black pixels ters (Fig. 3); and (ii) for p> Pe, {(u) decreases frome (at
separated by, but belonging to the same connected cluster y=0) to ¢ g wheres, is the connectedporosity of the po-
In fact, this second probability would be, in principle, more rous section, i.e., the volume fraction of pores that are con-
appropriate to describe the connectivity between any twgected to the outer surfacéBig. 4).
black pixels when separated byand will be defined by the Note that the definition of the connectivity function is
introduction of a new phase function necessary for the analysis of 2D sections of a 3D porous
medium: two clusters that are not connected in two dimen-
sions may be connected between themselves in the third di-
0 otherwise. mension. However, two different 2D sections of a given 3D

(6) porous medium must present th@meconnectivity function,

if the medium can be supposed isotropic.

k when x belongs to the porous phade
P(x)=

A connectivity functior?(u) can thus be defined as

{(u)=(3(P(x),P(x+u))), () e

where &(,j) is 1 if i=j#0 and O otherwise. The phase
function P(x) can be obtained by labeling the connected
black clusters present in the porous sectrin the present
work, this was performed by using the labeling algorithm 82 1
developed by Hoshen and Kopelmigo]. 2 4
The connectivity functiori(u), defined as above, showsa &, |-
very interesting behavior when used to describe isotropic
porous section$. Some tests were performed with an arti-
ficially generated porous section, when the black phase is '
composed by the union of identical black square objeats 0 5 10 15 20
domlydistributed in a square section with a linear dimension Displacement, u (pixels)
[, great enough to ensure statistical homogenéfig. 2).
Takingp as the number fraction of black objects, the results £, 4. comparison between the classical correlation function
indicate that, whereas the classical correlation function hagy) and the connectivity functiog(u), presently defined, for an

thesame behavioevery time, decreasing from(atu=0)t0 gartificially generated porous section with identical black objects,
&%, atu~ly, wherel, is the length of the identical black with linear lengthly, randomly distributed in the section. The num-
objects distributed in the black phage, for p<p., where  per fraction of black objectp is greater tharp.. (u)=¢?2 for

p. corresponds to the percolation threshold in two dimendarger values ofi, whereasC(u) has the same behavior presented

sions, {(u) decreases fronz (at u=0) to O (at u~I, the in Fig. 3, reducing tc? for u>l,.

T

—~~~-{}-——— Correlatiors

———(O—— Connectivity
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po e, ) Pn- Un=Pn(1=Pn-1)--(1=py),

Un-1=Pn-1(1—Pp-2) - (1—p1),
9

V1= P1,

which constitute a set af equations that can be solved for
the unknowng,,p,,....p,. LetV,; be the total porous vol-
ume, apparent at scale

i
FIG. 5. Superposition of scalesandn—1. V= vj. (10
i=1

Reconstruction ofs means generation of 2D or 3D sec- | ¢t ¢ be the apparent porosity of the multiscale system,

tions preserving the moments of the phase funcidr),  considered as the superposition of scalds i + 1. The total
including the apparent porosity and all its higher-order porosity e may thus be written as
moments. In the present paper, the use of multiscale perco-

lation systems for the reconstruction of porous media is dis- e=V;+(1-V))g, (11
cussed. It is demonstrated that the method allows one to d "
preserve the apparent porosityand the classical correlation 2N consequently,

functionC(u). However, it is also shown that the connectiv- e—V,

ity function ¢(u) is not preserved due to the random spatial Si:(l——V)' (12
distribution of pores, at each scale, in a MPS. An improved :

MPS reconstruction method is briefly discussed. At eachi scale, the correlation function will positive for

displacements smaller thdm, . In fact, although the pords

are distributed at random at each sdalthe superposition of
pores of class—1 on thei scale will make correlated the
pores at displacement level This is the basic principle of

Following Neimark[15] and Daan, Xu, and Quenard the present reconstruction method. Two classes of problems

[16,17], pore sections will be supposed to be a superpositiomay be thus established) to calculate the correlation func-
of square(2D) or simple cubic3D) networks. Pores will be tion for displacements; smaller tharD, as a function of the
supposed to be squaré8D reconstruction or cubes(3D  volume fractionw; apparent at scale (tirect problem and

reconstructiopof linear sizeD, . The class =1 corresponds (ii) to calculate the volume fractions apparent at scale 1
to the larger diameters and the classn to the smaller ones. from the measured values of the correlation functiomerse

Ill. MULTISCALE 2D OR 3D RECONSTRUCTION
FROM 2D SECTIONS

For each class, D;=2D; ;: problem). In the following, the two problems are formulated
for a given porous section, associated with a single binary
D,=2D,=4D4=---=2""1p (8) representation.

A. Direct problem

The MPS is considered to be infinite in size. KGgtbe the
correlation value related to@; displacement, i.e., the inter-

solid matter with diameteD, (or cells of porous matter, section volumg between the pores of the original MPS and
with pore diameters smaller thad,). The symbold means e Pores of this same system displacedXy As pores of
the dimension of the MPSt=2 in 2D andd=3 in 3D MPS. class 1 are c0n5|d_ered as the greater geometrical entities
The scalen—1 corresponds to a two-sized distribution of Present in the multiscale systempDg displacement of the
pores of diameter®, and pores of diameteéd, ;. At this MPS will put each clags of pores in intersection w_|th anyone
scale the number of cells in the MPS isd_,, where of the pores present In the. MPS, with a proportianThe

L, ,=L,/2. Letv, be the volume fraction of class appar-  Probability of intersection will thus be

ent at scale 1. Lep,, be the fraction of pores of clags,
which will be distributedat randomat scalen. Superposition
of pores of classn—1 with pores of class, at the scale Consider now &,=D,/2 displacement and |€l, be the
n—1, will mask part of the volume fraction of pores from associated correlatio(Fig. 6). In this case, one-half of the
classn, at this scaléFig. 5 and only ap,(1—p,—1) fraction  pore of class 1 will intercept itself and the other half will
of pores of class will be apparent at scala—1. In fact, intercept any one of the pores of the MPS with a probability
both classes of pores were distributed at random and indef intersectionv ,/2+ (v4/2)e. For pores of class 2, half of
pendently at each correspondent scale. At soal@ there these pores, labeled with a circle in Fig. 6, will surely not
will be p(1-p,_1)(1—p,_,) pores from classn and intercept pores of class 1 forl, displacement and the other
Pr_1(1—p,_2) pores from classn—1. Following recur- half may intercept with any one of the pores in the MPS. The
sively, aftern—1 superpositions, the apparent volumes  probability of intersection associated with the pores of class
i=1,2,...n, can be written as 2 when submitted to such a displacement will thus be

which is equivalent to taking the lowest integer 2 as a con-
stant scale factdrl6,17]. The scalen corresponds to ane-
sizeddistribution ofL ¢ pores with diameteb, and cells of

Ci=vie+vetvget - =g (13
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which means that; is uniquely determined from the corre-
lations calculated at the displacemeBts, using

Vn:8, Uj:Vj_Vj—l' (18)

Equations(16) and (17) imply that (i) for a given pore size
distribution there is one and only one associated correlation
function that conserves the apparent porosityand, con-
versely,(ii) for a given correlation function there is one and
only one pore size distribution for the given apparent poros-
ity €. In other words, in the present conception, there is a
one-to-one correspondence between the pore size distribu-
tion and the correlation function, i.e., the MPS model has
2 , one and only oneorrelation function. This one-to-one cor-
respondence ensures that the correlation function measured
at the MPS or calculated with E¢16) will be the same as

the correlation function measured at the original 2D binary
section of the porous sectiomhen this section can be rep-
resented by a MPS

FIG. 6. Calculation of the correlatio@, by displacing the MPS
by D,. Pores of classes 2 and 3 labeled wittbacannot intercept
pores of class 1, with &, displacement.

(vo/2)e 1+ (vo/2)e, where the first term of this sum is the
conditional probability that half of the pores of class 2 inter- IV. VALIDATION OF THE MODEL
cept another pore, given that they will never intercept pores
of class 1 with aD, displacement. Applying the same rea-
soning for pores of class 3, 4,..., the following expressio
will be obtained forC,:

Equation(16) was validated against measured values of
the correlation for four artificially Monte Carlo generated 2D
Tultiscale systems of size 8192096 pixels. Correlation
values were measured using the method described by Adler
[19] and by Philippiet al.[9], assuming isotropy, and calcu-

C,= R RLE N U e+ Y2 1 e+ Y3 4. lated using the theoretical expression Exf). Table | shows
2 2 2 2 2 2 the results. The first column gives the theoretical valuas of
62 (e=V,) v used for Monte Carlo generation of the MPS. The second
=+ g 2 (14) ~ column gives the values of; measured at the MPS after
2 2 2 Monte Carlo generation, graphically computing the number
of cells of each class. These values where used for calculat-
Proceeding with the same reasoning @y, ing the correlations. Column 3 presents the error between the
theoretical value of the correlatiofigiven by Eq.(16)] and
vy vy 2vy;  2v; P their corresponding measured values over the MPS. Itis seen
Co=|—7+71 8) (T t ety 8) that (i) errors are very small, remaining smaller than 0.250%
) for all displacements, an(i) errors increase with increasing
+ %sﬁ%sﬁ%s)Jr... displacements.
) V. MULTISCALE RECONSTRUCTION OF THE POROUS
e“ 3v; 2v, e1 2¢e,
=St e V) (e V) STRUCTURE OF A CEMENT AND LIME PASTE

Figure 7 shows a binary representation of a
3200x magnification picture of a cement and lime paste,
taken with a scanning electron microscaojsee[9] for de-
tails). Each pixel corresponds to a 62625 A? square. Pores

(19

For an arbitraryD; displacement, the associated correlation

will be of diameters smaller than 625 A are thus not apparent at this
5 -1 [IRE magnification. The apparent porosity at this magnification
LAy (e—Vi)e > 2 -1 b (16 \as calculated as 0.4714.
sl he o = D7) B Volume fractions were determined for each pore diameter

using the aperture method from image analydi8]. The
which enables the calculation 6f from given values of the ds—4 Metric was used for the determination. Figure 8 shows
pore sizes distribution;,v,,....vy. two balls, in this metric, corresponding to the most elemen-
tary structural elements that can be used in aperture opera-
tions, with diameters of 2 and 4 pixelassociated with 1250
and 2500 A, respectively. The smallest pore diameter that
From Eq.(16), the volumeV; can be explicitly related to can be found using this metric is thus 1250 A. The cumula-

B. Inverse problem

the correlation values by tive volume fractions corresponding to 1250, 2500, 5000,
, 10 000, and 20 000 A were used to construct the MPS model
Ci—2Cji1te (17 shown in Fig. 9, using Eq9) to take the effect of superpo-

J:CJ-—ZCJ-HJr 2e—1’ sition into account. Several MPSs were generated and the
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TABLE |. Comparison between measured and calculated values of the correlation function for four
artificially Monte Carlo generated, 2D porous sections of size &4®6 pixels.

Errors between measured and
calculated values of; (%)

v v; C_meas_ Ctheo
(theoretical values (measured valugs Displacement 107 — C_meas'
|

v,=0.1 v,=0.099 D, 0.224
v,=0.1 v,=0.100 D, 0.111
vs=0.1 v5=0.100 D, 0.092
va=0.1 v4=0.100 D, 0.050
vg=0.1 v5=0.100 D, 0.016
v,=0.1 v,=0.099 D, 0.194
v,=0.1 v,=0.100 D, 0.098
vs=0.2 va=0.200 D, 0.044
v,=0.2 v4=0.200 D, 0.021
vs=0.3 vs=0.300 Dy 0.011
v,=0.1 v,=0.099 D, 0.201
v,=0.2 v,=0.201 D, 0.103
v3=0.3 v5=0.300 D, 0.052
v4=0.2 v4=0.200 D, 0.022
vs=0.1 v5=0.100 Dy 0.011
v,=0.3 v,=0.299 D, 0.200
v,=0.2 v,=0.201 D, 0.100
vs=0.2 v3=0.200 D, 0.046
va=0.1 v4=0.100 D, 0.029
vs=0.1 v5=0.100 Dy 0.013

correlation function was measured over the MPSs and calcunodify the spatial correlation of the porous structatehe
lated using Eq.(16). Table Il shows the results for three object level

MPSs with size 40984096 pixels constructed using differ-

ent random generators. A comparison_ is also performed with VI. MPS RECONSTRUCTION

respect to _th_e values of the_cor_relatlon function meas_ured AND CONNECTIVITY EUNCTION

over the original porous sectiaffrig. 7). The agreement is

quite good, showing that MPS reconstruction does not Visual inspection of Figs. 7 and 9 indicates that the spatial
correlation between pores, forming clusters of connected ob-
jects in two dimensions, was not conserved in MPS recon-
struction. In fact, as already mentioned, the main limitation
of MPS models is related to the randomness hypothesis at
each scale. In the present section, the connectivity function
defined in Sec. Il A is used to quantify this limitation, by
measuringZ(u;) on the original porous sectioffrig. 7) and

at the MPS model shown in Fig. 9. Results are shown in Fig.

6
434
3 6[3[0]3]s
D0 434
3 6
d=2 d=4
FIG. 7. Binary representation of a 3280magnification picture FIG. 8. Balls, in metriad;_ 4, with diameters of 2 and 4 pixels,

of a cement and lime pas{é]. respectively.
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FIG. 10. Comparison between the measured values of the con-
nectivity function at the original porous section and at the MPS
model.

FIG. 9. MPS reconstitution of the porous section shown in
Fig. 7. distributed at random at the scale that correspondsv,to

eliminating the connectivity of the original porous section.

Cracks can be viewed atusters of connected poresd, in

10. It can be noticed, first of all, that both functions CONVergeyic case. the failure of MPS models to represent cracked
toward zero, related to the case, previously mentioned, wher orous sections can be reduced to the first limitation above

the apparent'con.nected porosity of the §ection is Z€ro, Wh” iscussed, reducing the problem to finding a MPS model,
the real medium is probably connected in three dlmen5|on% itable to conserve the connectivity function discussed in

Figure 10 shows a great discrepancy between the measur c. 1A This does not appear to be possible by using the
values of the connectivity function. The shape of the CUIVe$, ndomness hypothesis at each scale

are sensibly different and the correlation length of the MPS
is about two times smaller than in the original image. Al-
though conserving, in the case of the medium presently stud-
ied, the correlation function at the object level, i.e., pores, In the present work a MPS reconstruction method is dis-
MPS reconstruction, as performed here, is not able to coneussed, when applied to isotropic porous sections. The con-
serve the geometrical structure ofusters of connected nectivity function is defined. This function is the probability
pores. This is an important limitation when the method isof finding any two pixels belonging to the same phasdhe
used to reconstitute 3D porous media for simulating equilibsame cluster of connected pixelghen separated by a given
rium and transfer processes, which are conditioned by thdisplacementi. Results show that, although conserving the
topology of the porous structure, e.g., drainage and fluictlassical correlation function for porous sections that are able
transfer. to be represented by MPS models, MPS reconstruction, as
Another limitation of MPS models is related to the first performed here, fails to conserve the connectivity function.
one, discussed above, although intrinsically more compli- A more general reconstruction method based on MPS has
cated to solve. In fact, in the MPS construction methodbeen proposefll7,21,22 in order to describe the pore space
pores are considered as objects with the same linear dimeaecessible to fluids, i.e., the pore space connected at a large
sion in orthogonal directions: squares or cubes. Porous seseale. The porous phase is not represented by the MPS itself,
tions having pores with large length)(to width (w) ratios  but by the multiscale 3D infinite cluster of the MPS. In this
(e.g., crackscannot be represented by MPS models as contype of reconstruction, the volume fraction of each class in
ceived in the present paper. In fact, pores with large aspethe total MPS is calculated, using renormalization functions,
ratios|/w are considered here as a set of squémesube$  from the corresponding volume fraction present in the infi-
with length| equal to the widthw of the pore(Fig. 11). In  nite cluster and taken as the measured vatyesgiven by
the MPS construction process, these squémesube$ are  Eg. (9), on the original porous section. The elements of each

VII. DISCUSSION

TABLE Il. Correlation values for three MPSs of size 4098096 pixels using different random genera-
tors.

Displacement Actual Calculated Calculated Calculated Measured Measured Measured

A values atMPS1 atMPS2 atMPS3 atMPS1 atMPS2 atMPS3
1250 0.3955 0.3971 0.3967 0.3981 0.3973 0.3960 0.3962
2500 0.3408 0.3462 0.3456 0.3470 0.3463 0.3448 0.3451
5000 0.2890 0.2840 0.2838 0.2849 0.2842 0.2827 0.2830

10000 0.2462 0.2380 0.2379 0.2390 0.2384 0.2370 0.2373

20000 0.2383 0.2219 0.2226 0.2230 0.2227 0.2216 0.2218
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(@) (b) randomly distributed at each scale, starting from the mea-
_ sured values of the connectivity function is presently not
W— —v . . . . - possible, because no equation comparable to(EQ.exists
! v for the connectivity function. An analysis concerning the
preservation of the connectivity function in 2D sections of
FIG. 11. MPS reconstitutiorib) of an object(a) with large  the 3D MPS generated by using such a method is presently
length () to width (w) ratios. being undertaken and is planned to be the subject of another
paper.
class belonging to the infinite cluster are thus not randomly
distributed in the space as in the total MPS and therefore a
certain correlation is introduced in the descriptive structure.
In fact, one can expect that using such a method would allow The work was supported by Conselho Nacional de Desen-
one to improve the results from the point of view of the volvimento Cientiico e Tecnolgico, Coordengao de Aper-
connectivity function of the reconstructed section. Unfortu-feicoamento do Pessoal dewsl Superior, and Centre Na-
nately, the identification of the representative volumes to beional de la Recherche Scientifique.
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