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Multiscale percolation systems~MPSs! were proposed to study invasion processes in porous media with a
large pore size distribution, considering the porous section as a polydisperse structure that modifies its geo-
metrical structure when the scale of observation is changed. Multiscale models are nonregular percolation
systems and do not have the following limitations common to classical percolation systems:~i! It is not
necessary to choose a particular value for the coordination numberZ nor to establish a particular distribution
law for it and ~ii ! constrictions appears naturally as pores of smaller diameters connecting pores of greater
diameters, as the result of superposing different scales. A fundamental question that arises in this method is
related to the conservation of the spatial connectivity between the pores, which is very important if MPS
models are to be used for simulating fluid retention and transfer. The present work is focused on this problem.
It is shown that, although conserving the classical correlation function at the object level, i.e., pores, the use of
a MPS as a representation of a porous medium does not allow for the conservation of the geometrical structure
of clusters of connected pores. An improved MPS model is discussed.@S1063-651X~96!08407-3#

PACS number~s!: 47.55.Mh, 61.43.Bn

I. INTRODUCTION

Microscopic models for simulating fluid retention and
transfer in porous media are frequently monodisperse models
based on random percolation networks of sites and/or bonds
interacting between themselves in a single scale. Classically,
sites are randomly distributed in a network with a constant or
variable coordination numberZ, which is the number of sites
that are neighbors of each site in the network. The diameter
of the bond connecting two contiguous sites is randomly
chosen so as to remain smaller than the diameters of the
connected sites. Several well-known problems are associated
with this construction procedure:~i! It is very difficult to
choose a particular constant coordination numberZ for the
porous structure or to ascertain a realistic distribution law for
this parameter,~ii ! it is very difficult to access the size dis-
tribution of constrictions, and~iii ! for simplicity reasons, net-
works are frequently spatially noncorrelated.

Mercury intrusion and sorption isotherms results have
been used to estimate the size distribution of constrictions
@1,2#. In general, several parameter models are needed in this
kind of work, which are adjusted to fit the model to experi-
mental data. In fact, the introduction of bonds in the perco-
lation system is frequently a necessary hypothesis in perco-
lation models due to the lack of information about the spatial
distribution of pores. Chatzis and Dullien@1# and Daı¨an and
Saliba @2# used a local correlation between throat size and
pore size given by a relationship between the cumulative
distributions of throats and pores. Mayagoitiaet al. @3# have
also considered a local correlation between a site and the
contiguous bond, generated by the conditional probability
related to the impossibility of connecting a site with a bond
greater in size. Spatially correlated networks of sites and
bonds were considered, e.g., by Renault@4# to study the in-

fluence of spatial correlation on the percolation threshold and
by Ioannidis and Chatzis@5,6# and Tsakiroglou and
Payatakes@7# to study the effect of spacial correlation on
mercury intrusion.

Recently, image analysis methods used over pictures of
highly polished surfaces of porous materials, taken with an
electron scanning microscope, have been used to describe the
porous structure@8–12#. Aperture and median line graphics
methods@10,13# enable the statistical investigation of porous
sections, including the statistical description of constrictions
and connectivity between pores. By assuming isotropy,
three-dimensional percolation networks can thus be con-
structed from two-dimensional~2D! porous sections, con-
serving the size distribution of pores and constrictions and
the distribution law for the coordination number@10#.

A multiscale approach is used in the present article. The
porous section is conceived as a polydisperse structure that
modifies its geometrical structure when the scale of observa-
tion is changed. This conception is in accordance with the
fractal ~in the sense ofbroken, as in Mandelbrot@14#! nature
of porous materials: geometrical parameters such as porous
volumeV and porous surfaceS require the use of a measur-
ing scalel and increase their values asl decreases. Without
taking the technical difficulties into account, such as attain-
able resolution when using electron scanning microscopy or
any other kind of measuring method, this description appears
to be specially suitable for the geometrical description of
porous media with a large pore size distribution. Another
difficulty comes from the limitations of the geometrical mod-
els, necessary for simplicity in the geometrical description.

Multiscale models were introduced by Neimark@15#,
called multiscale percolation systems~MPSs!. At the first
scale, a mosaic of blocks of sizer 1 is constructed. These
blocks are classified as pores~X blocks!, solid matter~Y
blocks!, and blocks of pores with sizes smaller thanr 1 ~Z
blocks!, which arerandomlydistributed in accordance with a
previously known pore size distribution. In a second scale
r 25r 1/n1 , wheren1 is an integer, each blockZ is farther
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segmented in blocksX, Y, andZ of size r 2 and so on. At
each scalei the construction process of the MPS preserves
the volume fraction of pores with size equal to or greater
than r i , v i

X, and the volume fraction of solid matterv i
Y ob-

served at this scale. The remaining volume fraction
v i
Z512(v i

X1v i
Y) is considered to be composed by porous

matter, made by pores with diameters smaller thanr i and not
observed at scalei .

Based on Neimark’s model, Daı¨an @16# proposed a sim-
plified version of the method, randomly distributing the
pores at each scale, starting from the smaller diameters and
multiplying the scale length by 2 at each step. At each scale,
pores are randomly distributed in accordance with their vol-
ume fraction obtained from the pore size distribution. In this
method, noZ blocks are introduced in the structure, in order
to reduce the number of volume fractions to be identified.
Reconstruction of the medium is performed by superposing
the different scales. See also Daı¨an, Xu, and Quenard@17#.

Multiscale models as conceived by Neimark and Daı¨an
are nonregular percolation systems and do not have the first
two limitations mentioned in the first paragraph of the
present section. In fact,~i! it is not necessary to choose a
particular value for the coordination numberZ nor to estab-
lish a particular distribution law for it and~ii ! constrictions
appear naturally aspores of smaller diameters connecting
pores of greater diameters, as the result of superposing dif-
ferent scales.

Another important question that arises in this method is
related to the third limitation mentioned in the first paragraph
of the present section, i.e., the conservation of the spatial
correlation of the pores when the different scales are super-
posed: although the pores are not spatially correlated at a
given scale, the correlation function will be different from
zero for displacements smaller than the greater pore diameter
found in the microstructure, when calculated over the recon-
structed section. The question to be posed iswhether the
reconstruction method preserves the correlation function
measured over the original 2D binary representation of the
porous section. The present work is focused on this problem.

II. STATISTICAL PARAMETERS
OF 2D POROUS SECTIONS

Let S be a section of a porous medium, given by a 2D
binary representation like the one shown in Fig. 1, where the
porous phase is represented in black and the solid matrix in
white @18#. It is supposed that the porous medium is isotropic
and thatS is large enough to enable statistical homogeneity.
Two binary representations related to any two different sec-
tions of the medium will be thus statistically equivalent. In
the same way,Swill display all the statistical information at
this representation.

Classically, a phase functionZ is defined as

Z~x!5H 1 when x belongs to the pore space

0 otherwise,
~1!

wherex denotes the vector giving the position in the plane of
S. In fact,x denotes the set of 2-uples (x1 ,x2), wherex1 ,x2

are integers, multiples of the measuring unit, i.e., the pixel.
The apparent porosity, i.e., the void fractionat the selected
scale, can be obtained as

«5^Z~x!&, ~2!

where ^ & means statistical average in the sample space. A
correlation function can also be written as

C~u!5^Z~x!Z~x1u!& ~3!

for each arbitrarily chosenu, whereu is a displacement in
the plane of the porous section. Assuming an isotropic po-
rous distribution, the correlation function will only depend
on u5uuu and can be written as

C~u!5^@Z~x1 ,x2!#@Z~x11u,x2!#&. ~4!

The correlation function decreases fromC(u)5« for u50
to C(u)5«2 for large values ofu. Similarly, the normalized
covariance function can be defined as

R~u!5
^@Z~x1 ,x2!2«#@Z~x11u,x2!2«#&

^@Z~x1 ,x2!2«#2&
, ~5!

with values between 1~for u50! to 0 ~for largeu!.
As implied by Eq. ~3!, the correlation function can be

obtained by displacing the binary representation over itself in
the x1 direction ~or x2!, using multiples of the cell dimen-
sions and measuring the void fraction related to the intersec-
tion, i.e., the frequency of outcomes corresponding to two
superposed black cells. This method is described in more
details by Adler@19# and Philippiet al. @9#.

A. Connectivity function

The correlation function is related to the spatial correla-
tion between two arbitrarily located pixels belonging to the
porous phase~black phase! when separated byu and is not to

FIG. 1. Binary image of a polished section of Fontainebleau
sand ~Fontainebleau, France!: pores are shown in black and the
solid matrix in white.
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be confused with the probability of finding two black pixels
separated byu, but belonging to the same connected cluster.
In fact, this second probability would be, in principle, more
appropriate to describe the connectivity between any two
black pixels when separated byu and will be defined by the
introduction of a new phase function

P~x!5H k when x belongs to the porous phasek

0 otherwise.
~6!

A connectivity functionz~u! can thus be defined as

z~u!5^d„P~x!,P~x1u!…&, ~7!

where d„i , j … is 1 if i5 jÞ0 and 0 otherwise. The phase
function P~x! can be obtained by labeling the connected
black clusters present in the porous sectionS. In the present
work, this was performed by using the labeling algorithm
developed by Hoshen and Kopelman@20#.

The connectivity functionz~u!, defined as above, shows a
very interesting behavior when used to describe isotropic
porous sectionsS. Some tests were performed with an arti-
ficially generated porous section, when the black phase is
composed by the union of identical black square objectsran-
domlydistributed in a square section with a linear dimension
l , great enough to ensure statistical homogeneity~Fig. 2!.
Takingp as the number fraction of black objects, the results
indicate that, whereas the classical correlation function has
thesame behaviorevery time, decreasing from« ~atu50! to
«2, at u; l 0 , where l 0 is the length of the identical black
objects distributed in the black phase,~i! for p,pc , where
pc corresponds to the percolation threshold in two dimen-
sions, z(u) decreases from« ~at u50! to 0 ~at u; l c the

cluster length, defined in this work as the length of the great-
est cluster present in the porous section!, which is a very
interesting property, since the cluster lengthl c increases with
the proportionp of black objects and indicates thatz(u) is
modified by the fashion the objects are grouped to form clus-
ters ~Fig. 3!; and ~ii ! for p.pc , z(u) decreases from« ~at
u50! to « c

2, where«c is theconnectedporosity of the po-
rous section, i.e., the volume fraction of pores that are con-
nected to the outer surfaces~Fig. 4!.

Note that the definition of the connectivity function is
necessary for the analysis of 2D sections of a 3D porous
medium: two clusters that are not connected in two dimen-
sions may be connected between themselves in the third di-
mension. However, two different 2D sections of a given 3D
porous medium must present thesameconnectivity function,
if the medium can be supposed isotropic.

FIG. 2. Artificially generated porous section: the black phase is
composed by identical black square objects with linear dimension
l 0 randomlydistributed in a square section with a number fraction
p,pc . The cluster lengthl c is identified in the figure, considered to
be the linear length of the greatest cluster of connected black ob-
jects present in the section.

FIG. 3. Comparison between the classical correlation function
C(u) and the connectivity functionz(u), presently defined, for an
artificially generated porous section with identical black objects,
with linear lengthl 0 , randomly distributed in the section. The num-
ber fraction of black objectsp is smaller thanpc . z(u)50 only for
u. l c , wherel c is the cluster length, whereasC(u)5«2 for u. l 0 .

FIG. 4. Comparison between the classical correlation function
C(u) and the connectivity functionz(u), presently defined, for an
artificially generated porous section with identical black objects,
with linear lengthl 0 , randomly distributed in the section. The num-
ber fraction of black objectsp is greater thanpc . z(u)5« c

2 for
larger values ofu, whereasC(u) has the same behavior presented
in Fig. 3, reducing to«2 for u. l 0 .
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Reconstruction ofS means generation of 2D or 3D sec-
tions preserving the moments of the phase functionZ~x!,
including the apparent porosity« and all its higher-order
moments. In the present paper, the use of multiscale perco-
lation systems for the reconstruction of porous media is dis-
cussed. It is demonstrated that the method allows one to
preserve the apparent porosity« and the classical correlation
functionC(u). However, it is also shown that the connectiv-
ity function z~u! is not preserved due to the random spatial
distribution of pores, at each scale, in a MPS. An improved
MPS reconstruction method is briefly discussed.

III. MULTISCALE 2D OR 3D RECONSTRUCTION
FROM 2D SECTIONS

Following Neimark @15# and Daı¨an, Xu, and Quenard
@16,17#, pore sections will be supposed to be a superposition
of square~2D! or simple cubic~3D! networks. Pores will be
supposed to be squares~2D reconstruction! or cubes~3D
reconstruction! of linear sizeDi . The classi51 corresponds
to the larger diameters and the classi5n to the smaller ones.
For each classi , Di52Di11:

D152D254D35•••52n21Dn , ~8!

which is equivalent to taking the lowest integer 2 as a con-
stant scale factor@16,17#. The scalen corresponds to aone-
sizeddistribution ofL n

d pores with diameterDn and cells of
solid matter with diameterDn ~or cells of porous matter,
with pore diameters smaller thanDn!. The symbold means
the dimension of the MPS:d52 in 2D andd53 in 3D MPS.
The scalen21 corresponds to a two-sized distribution of
pores of diametersDn and pores of diameterDn21. At this
scale the number of cells in the MPS isL n21

d , where
Ln215Ln/2. Letvn be the volume fraction of classn, appar-
ent at scale 1. Letpn be the fraction of pores of classn,
which will be distributedat randomat scalen. Superposition
of pores of classn21 with pores of classn, at the scale
n21, will mask part of the volume fraction of pores from
classn, at this scale~Fig. 5! and only apn(12pn21) fraction
of pores of classn will be apparent at scalen21. In fact,
both classes of pores were distributed at random and inde-
pendently at each correspondent scale. At scalen22 there
will be pn(12pn21)(12pn22) pores from classn and
pn21(12pn22) pores from classn21. Following recur-
sively, aftern21 superpositions, the apparent volumesv i ,
i51,2,...,n, can be written as

vn5pn~12pn21!•••~12p1!,

vn215pn21~12pn22!•••~12p1!,
~9!

••• ,

v15p1 ,

which constitute a set ofn equations that can be solved for
the unknownsp1 ,p2 ,...,pn . Let Vi be the total porous vol-
ume, apparent at scalei ,

Vi5(
j51

i

v j . ~10!

Let « i be the apparent porosity of the multiscale system,
considered as the superposition of scalesn to i11. The total
porosity« may thus be written as

«5Vi1~12Vi !« i ~11!

and, consequently,

« i5
«2Vi

~12Vi !
. ~12!

At each i scale, the correlation function will positive for
displacements smaller thanDi . In fact, although the poresi
are distributed at random at each scalei , the superposition of
pores of classi21 on thei scale will make correlated the
pores at displacement leveli . This is the basic principle of
the present reconstruction method. Two classes of problems
may be thus established:~i! to calculate the correlation func-
tion for displacementsui smaller thanD1 as a function of the
volume fractionsv i apparent at scale 1~direct problem! and
~ii ! to calculate the volume fractionsv i apparent at scale 1
from the measured values of the correlation function~inverse
problem!. In the following, the two problems are formulated
for a given porous section, associated with a single binary
representation.

A. Direct problem

The MPS is considered to be infinite in size. LetC1 be the
correlation value related to aD1 displacement, i.e., the inter-
section volume between the pores of the original MPS and
the pores of this same system displaced byD1 . As pores of
class 1 are considered as the greater geometrical entities
present in the multiscale system, aD1 displacement of the
MPS will put each class of pores in intersection with anyone
of the pores present in the MPS, with a proportion«. The
probability of intersection will thus be

C15v1«1v2«1v3«1•••5«2. ~13!

Consider now aD25D1/2 displacement and letC2 be the
associated correlation~Fig. 6!. In this case, one-half of the
pore of class 1 will intercept itself and the other half will
intercept any one of the pores of the MPS with a probability
of intersectionv1/21(v1/2)«. For pores of class 2, half of
these pores, labeled with a circle in Fig. 6, will surely not
intercept pores of class 1 for aD2 displacement and the other
half may intercept with any one of the pores in the MPS. The
probability of intersection associated with the pores of class
2 when submitted to such a displacement will thus be

FIG. 5. Superposition of scalesn andn21.
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(v2/2)«11(v2/2)«, where the first term of this sum is the
conditional probability that half of the pores of class 2 inter-
cept another pore, given that they will never intercept pores
of class 1 with aD2 displacement. Applying the same rea-
soning for pores of class 3, 4,..., the following expression
will be obtained forC2 :

C25S v12 1
v1
2

« D1S v22 «11
v2
2

« D1S v32 «11
v3
2

« D1•••

5
«2

2
1

~«2V1!

2
«11

v1
2
. ~14!

Proceeding with the same reasoning forC3 ,

C35S 3v14 1
v1
4

« D1S 2v24 1
2v2
4

«11
v2
4

« D
1S 2v34 «21

v3
4

«11
v3
4

« D1•••

5
«2

4
1
3v1
4

1
2v2
4

1~«2V1!
«1
4

1~«2V2!
2«2
4

.

~15!

For an arbitraryDj displacement, the associated correlation
will be

Cj5
«2

2 j21 1(
i51

j21
~«2Vi !« i

2 j2 i 1(
i51

j21
2 j2 i21

2 j2 i v i , ~16!

which enables the calculation ofCj from given values of the
pore sizes distributionv1 ,v2 ,...,vN .

B. Inverse problem

From Eq.~16!, the volumeVj can be explicitly related to
the correlation values by

Vj5
Cj22Cj111«2

Cj22Cj1112«21
, ~17!

which means thatv j is uniquely determined from the corre-
lations calculated at the displacementsDj , using

Vn5«, v j5Vj2Vj21 . ~18!

Equations~16! and ~17! imply that ~i! for a given pore size
distribution there is one and only one associated correlation
function that conserves the apparent porosity« and, con-
versely,~ii ! for a given correlation function there is one and
only one pore size distribution for the given apparent poros-
ity «. In other words, in the present conception, there is a
one-to-one correspondence between the pore size distribu-
tion and the correlation function, i.e., the MPS model has
one and only onecorrelation function. This one-to-one cor-
respondence ensures that the correlation function measured
at the MPS or calculated with Eq.~16! will be the same as
the correlation function measured at the original 2D binary
section of the porous section,when this section can be rep-
resented by a MPS.

IV. VALIDATION OF THE MODEL

Equation~16! was validated against measured values of
the correlation for four artificially Monte Carlo generated 2D
multiscale systems of size 819234096 pixels. Correlation
values were measured using the method described by Adler
@19# and by Philippiet al. @9#, assuming isotropy, and calcu-
lated using the theoretical expression Eq.~16!. Table I shows
the results. The first column gives the theoretical values ofv i
used for Monte Carlo generation of the MPS. The second
column gives the values ofv i measured at the MPS after
Monte Carlo generation, graphically computing the number
of cells of each class. These values where used for calculat-
ing the correlations. Column 3 presents the error between the
theoretical value of the correlations@given by Eq.~16!# and
their corresponding measured values over the MPS. It is seen
that ~i! errors are very small, remaining smaller than 0.250%
for all displacements, and~ii ! errors increase with increasing
displacements.

V. MULTISCALE RECONSTRUCTION OF THE POROUS
STRUCTURE OF A CEMENT AND LIME PASTE

Figure 7 shows a binary representation of a
32003 magnification picture of a cement and lime paste,
taken with a scanning electron microscope~see@9# for de-
tails!. Each pixel corresponds to a 6253625 Å2 square. Pores
of diameters smaller than 625 Å are thus not apparent at this
magnification. The apparent porosity at this magnification
was calculated as 0.4714.

Volume fractions were determined for each pore diameter
using the aperture method from image analysis@13#. The
d324 metric was used for the determination. Figure 8 shows
two balls, in this metric, corresponding to the most elemen-
tary structural elements that can be used in aperture opera-
tions, with diameters of 2 and 4 pixels~associated with 1250
and 2500 Å!, respectively. The smallest pore diameter that
can be found using this metric is thus 1250 Å. The cumula-
tive volume fractions corresponding to 1250, 2500, 5000,
10 000, and 20 000 Å were used to construct the MPS model
shown in Fig. 9, using Eq.~9! to take the effect of superpo-
sition into account. Several MPSs were generated and the

FIG. 6. Calculation of the correlationC2 by displacing the MPS
by D2 . Pores of classes 2 and 3 labeled with as cannot intercept
pores of class 1, with aD2 displacement.
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correlation function was measured over the MPSs and calcu-
lated using Eq.~16!. Table II shows the results for three
MPSs with size 409634096 pixels constructed using differ-
ent random generators. A comparison is also performed with
respect to the values of the correlation function measured
over the original porous section~Fig. 7!. The agreement is
quite good, showing that MPS reconstruction does not

modify the spatial correlation of the porous structureat the
object level.

VI. MPS RECONSTRUCTION
AND CONNECTIVITY FUNCTION

Visual inspection of Figs. 7 and 9 indicates that the spatial
correlation between pores, forming clusters of connected ob-
jects in two dimensions, was not conserved in MPS recon-
struction. In fact, as already mentioned, the main limitation
of MPS models is related to the randomness hypothesis at
each scale. In the present section, the connectivity function
defined in Sec. II A is used to quantify this limitation, by
measuringz(ui) on the original porous section~Fig. 7! and
at the MPS model shown in Fig. 9. Results are shown in Fig.

TABLE I. Comparison between measured and calculated values of the correlation function for four
artificially Monte Carlo generated, 2D porous sections of size 819234096 pixels.

v i
~theoretical values!

v i
~measured values! Displacement

Errors between measured and
calculated values ofCi ~%!

102UCi
meas2Ci

theor

Ci
meas U

v150.1 v150.099 D1 0.224
v250.1 v250.100 D2 0.111
v350.1 v350.100 D3 0.092
v450.1 v450.100 D4 0.050
v550.1 v550.100 D5 0.016

v150.1 v150.099 D1 0.194
v250.1 v250.100 D2 0.098
v350.2 v350.200 D3 0.044
v450.2 v450.200 D4 0.021
v550.3 v550.300 D5 0.011

v150.1 v150.099 D1 0.201
v250.2 v250.201 D2 0.103
v350.3 v350.300 D3 0.052
v450.2 v450.200 D4 0.022
v550.1 v550.100 D5 0.011

v150.3 v150.299 D1 0.200
v250.2 v250.201 D2 0.100
v350.2 v350.200 D3 0.046
v450.1 v450.100 D4 0.029
v550.1 v550.100 D5 0.013

FIG. 7. Binary representation of a 32003 magnification picture
of a cement and lime paste@9#.

FIG. 8. Balls, in metricd324, with diameters of 2 and 4 pixels,
respectively.
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10. It can be noticed, first of all, that both functions converge
toward zero, related to the case, previously mentioned, where
the apparent connected porosity of the section is zero, while
the real medium is probably connected in three dimensions.
Figure 10 shows a great discrepancy between the measured
values of the connectivity function. The shape of the curves
are sensibly different and the correlation length of the MPS
is about two times smaller than in the original image. Al-
though conserving, in the case of the medium presently stud-
ied, the correlation function at the object level, i.e., pores,
MPS reconstruction, as performed here, is not able to con-
serve the geometrical structure ofclusters of connected
pores. This is an important limitation when the method is
used to reconstitute 3D porous media for simulating equilib-
rium and transfer processes, which are conditioned by the
topology of the porous structure, e.g., drainage and fluid
transfer.

Another limitation of MPS models is related to the first
one, discussed above, although intrinsically more compli-
cated to solve. In fact, in the MPS construction method,
pores are considered as objects with the same linear dimen-
sion in orthogonal directions: squares or cubes. Porous sec-
tions having pores with large length (l ) to width (w) ratios
~e.g., cracks! cannot be represented by MPS models as con-
ceived in the present paper. In fact, pores with large aspect
ratios l /w are considered here as a set of squares~or cubes!
with length l equal to the widthw of the pore~Fig. 11!. In
the MPS construction process, these squares~or cubes! are

distributed at random at the scale that corresponds tow,
eliminating the connectivity of the original porous section.
Cracks can be viewed asclusters of connected poresand, in
this case, the failure of MPS models to represent cracked
porous sections can be reduced to the first limitation above
discussed, reducing the problem to finding a MPS model,
suitable to conserve the connectivity function discussed in
Sec. II A. This does not appear to be possible by using the
randomness hypothesis at each scale.

VII. DISCUSSION

In the present work a MPS reconstruction method is dis-
cussed, when applied to isotropic porous sections. The con-
nectivity function is defined. This function is the probability
of finding any two pixels belonging to the same phase,in the
same cluster of connected pixels, when separated by a given
displacementu. Results show that, although conserving the
classical correlation function for porous sections that are able
to be represented by MPS models, MPS reconstruction, as
performed here, fails to conserve the connectivity function.

A more general reconstruction method based on MPS has
been proposed@17,21,22# in order to describe the pore space
accessible to fluids, i.e., the pore space connected at a large
scale. The porous phase is not represented by the MPS itself,
but by the multiscale 3D infinite cluster of the MPS. In this
type of reconstruction, the volume fraction of each class in
the total MPS is calculated, using renormalization functions,
from the corresponding volume fraction present in the infi-
nite cluster and taken as the measured valuesv i , given by
Eq. ~9!, on the original porous section. The elements of each

FIG. 9. MPS reconstitution of the porous section shown in
Fig. 7.

TABLE II. Correlation values for three MPSs of size 409634096 pixels using different random genera-
tors.

Displacement
~Å!

Actual
values

Calculated
at MPS 1

Calculated
at MPS 2

Calculated
at MPS 3

Measured
at MPS 1

Measured
at MPS 2

Measured
at MPS 3

1250 0.3955 0.3971 0.3967 0.3981 0.3973 0.3960 0.3962
2500 0.3408 0.3462 0.3456 0.3470 0.3463 0.3448 0.3451
5000 0.2890 0.2840 0.2838 0.2849 0.2842 0.2827 0.2830
10000 0.2462 0.2380 0.2379 0.2390 0.2384 0.2370 0.2373
20000 0.2383 0.2219 0.2226 0.2230 0.2227 0.2216 0.2218

FIG. 10. Comparison between the measured values of the con-
nectivity function at the original porous section and at the MPS
model.
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class belonging to the infinite cluster are thus not randomly
distributed in the space as in the total MPS and therefore a
certain correlation is introduced in the descriptive structure.
In fact, one can expect that using such a method would allow
one to improve the results from the point of view of the
connectivity function of the reconstructed section. Unfortu-
nately, the identification of the representative volumes to be

randomly distributed at each scale, starting from the mea-
sured values of the connectivity function is presently not
possible, because no equation comparable to Eq.~17! exists
for the connectivity function. An analysis concerning the
preservation of the connectivity function in 2D sections of
the 3D MPS generated by using such a method is presently
being undertaken and is planned to be the subject of another
paper.
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FIG. 11. MPS reconstitution~b! of an object ~a! with large
length (l ) to width (w) ratios.
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